If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2644y^2-232y+5=0
a = 2644; b = -232; c = +5;
Δ = b2-4ac
Δ = -2322-4·2644·5
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-232)-4\sqrt{59}}{2*2644}=\frac{232-4\sqrt{59}}{5288} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-232)+4\sqrt{59}}{2*2644}=\frac{232+4\sqrt{59}}{5288} $
| 30+8x=-3(-2-4x) | | 11=p/5+9 | | 3(x-5)=2+3x | | -(k-3)=-39+5k | | 2y=0+5 | | 3/4x-2/5x^2=0 | | 2(0)=-2x+5 | | x-6x^-1=1 | | x-6x^-1=0 | | 20(x+3)=2x+6 | | -7(7-3a)+a=31+6a | | 20-3p=-4(p-3)+2p | | 768x^2-247x+9=0 | | 798x^2-247x+9=0 | | 5+6x10=110 | | 174=3(-8n+2) | | 4(2x-4)+5=-27 | | (10,3);m=2 | | -4(4-x)=2(x-1) | | 201=-7(1-7x)+3x | | 3(2x+4)+9=-21 | | 18=5x+25 | | 18=5x+25× | | 4x^2-7x-147=0 | | -160=-4-2-6x | | 2(x-1)-2=5x-10 | | -88=8(v-7) | | 11-x/9=6 | | z/10+9=3 | | 8(b+7)=104 | | -48=2(2x-5)-2 | | 2x-6=2(2x-2) |